3.4.24 \(\int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx\) [324]

3.4.24.1 Optimal result
3.4.24.2 Mathematica [N/A]
3.4.24.3 Rubi [N/A]
3.4.24.4 Maple [N/A] (verified)
3.4.24.5 Fricas [N/A]
3.4.24.6 Sympy [N/A]
3.4.24.7 Maxima [N/A]
3.4.24.8 Giac [F(-2)]
3.4.24.9 Mupad [N/A]

3.4.24.1 Optimal result

Integrand size = 28, antiderivative size = 28 \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=-\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}-\frac {\sqrt {1-c x} \text {Chi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{b^2 \sqrt {-1+c x}}+\frac {\sqrt {1-c x} \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b^2 \sqrt {-1+c x}}+\frac {\sqrt {1-c x} \text {Int}\left (\frac {1}{x^2 (a+b \text {arccosh}(c x))},x\right )}{b c \sqrt {-1+c x}} \]

output
cosh(a/b)*Shi((a+b*arccosh(c*x))/b)*(-c*x+1)^(1/2)/b^2/(c*x-1)^(1/2)-Chi(( 
a+b*arccosh(c*x))/b)*sinh(a/b)*(-c*x+1)^(1/2)/b^2/(c*x-1)^(1/2)-(c*x-1)^(1 
/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)/b/c/x/(a+b*arccosh(c*x))+(-c*x+1)^(1/ 
2)*Unintegrable(1/x^2/(a+b*arccosh(c*x)),x)/b/c/(c*x-1)^(1/2)
 
3.4.24.2 Mathematica [N/A]

Not integrable

Time = 9.98 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx \]

input
Integrate[Sqrt[1 - c^2*x^2]/(x*(a + b*ArcCosh[c*x])^2),x]
 
output
Integrate[Sqrt[1 - c^2*x^2]/(x*(a + b*ArcCosh[c*x])^2), x]
 
3.4.24.3 Rubi [N/A]

Not integrable

Time = 1.02 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {6357, 6296, 25, 3042, 26, 3784, 26, 3042, 26, 3779, 3782, 6303}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx\)

\(\Big \downarrow \) 6357

\(\displaystyle \frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}+\frac {c \sqrt {1-c x} \int \frac {1}{a+b \text {arccosh}(c x)}dx}{b \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 6296

\(\displaystyle \frac {\sqrt {1-c x} \int -\frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arccosh}(c x)}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {1-c x} \int \frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arccosh}(c x)}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\sqrt {1-c x} \int -\frac {i \sin \left (\frac {i a}{b}-\frac {i (a+b \text {arccosh}(c x))}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \sqrt {1-c x} \int \frac {\sin \left (\frac {i a}{b}-\frac {i (a+b \text {arccosh}(c x))}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\cosh \left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))+\cosh \left (\frac {a}{b}\right ) \int -\frac {i \sinh \left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))\right )}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\cosh \left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))-i \cosh \left (\frac {a}{b}\right ) \int \frac {\sinh \left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))\right )}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arccosh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))-i \cosh \left (\frac {a}{b}\right ) \int -\frac {i \sin \left (\frac {i (a+b \text {arccosh}(c x))}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))\right )}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arccosh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))-\cosh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arccosh}(c x))}{b}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))\right )}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 3779

\(\displaystyle \frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arccosh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arccosh}(c x)}d(a+b \text {arccosh}(c x))-i \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )\right )}{b^2 \sqrt {c x-1}}+\frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 3782

\(\displaystyle \frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}+\frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )-i \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )\right )}{b^2 \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

\(\Big \downarrow \) 6303

\(\displaystyle \frac {\sqrt {1-c x} \int \frac {1}{x^2 (a+b \text {arccosh}(c x))}dx}{b c \sqrt {c x-1}}+\frac {i \sqrt {1-c x} \left (i \sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )-i \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )\right )}{b^2 \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c x (a+b \text {arccosh}(c x))}\)

input
Int[Sqrt[1 - c^2*x^2]/(x*(a + b*ArcCosh[c*x])^2),x]
 
output
$Aborted
 

3.4.24.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3779
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[I*(SinhIntegral[c*f*(fz/d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f 
, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 6296
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/(b*c)   S 
ubst[Int[x^n*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, 
b, c, n}, x]
 

rule 6303
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
 :> Unintegrable[(d*x)^m*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, m 
, n}, x]
 

rule 6357
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^m*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c* 
x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (Simp[ 
f*(m/(b*c*(n + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]   Int[(f 
*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^( 
n + 1), x], x] - Simp[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(( 
1 + c*x)^p*(-1 + c*x)^p)]   Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x 
)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, 
f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 
2*p + 1, 0] && IGtQ[m, -3]
 
3.4.24.4 Maple [N/A] (verified)

Not integrable

Time = 1.04 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93

\[\int \frac {\sqrt {-c^{2} x^{2}+1}}{x \left (a +b \,\operatorname {arccosh}\left (c x \right )\right )^{2}}d x\]

input
int((-c^2*x^2+1)^(1/2)/x/(a+b*arccosh(c*x))^2,x)
 
output
int((-c^2*x^2+1)^(1/2)/x/(a+b*arccosh(c*x))^2,x)
 
3.4.24.5 Fricas [N/A]

Not integrable

Time = 0.25 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.54 \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x} \,d x } \]

input
integrate((-c^2*x^2+1)^(1/2)/x/(a+b*arccosh(c*x))^2,x, algorithm="fricas")
 
output
integral(sqrt(-c^2*x^2 + 1)/(b^2*x*arccosh(c*x)^2 + 2*a*b*x*arccosh(c*x) + 
 a^2*x), x)
 
3.4.24.6 Sympy [N/A]

Not integrable

Time = 2.86 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.96 \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}\, dx \]

input
integrate((-c**2*x**2+1)**(1/2)/x/(a+b*acosh(c*x))**2,x)
 
output
Integral(sqrt(-(c*x - 1)*(c*x + 1))/(x*(a + b*acosh(c*x))**2), x)
 
3.4.24.7 Maxima [N/A]

Not integrable

Time = 0.69 (sec) , antiderivative size = 442, normalized size of antiderivative = 15.79 \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x} \,d x } \]

input
integrate((-c^2*x^2+1)^(1/2)/x/(a+b*arccosh(c*x))^2,x, algorithm="maxima")
 
output
-((c^2*x^2 - 1)*(c*x + 1)*sqrt(c*x - 1) + (c^3*x^3 - c*x)*sqrt(c*x + 1))*s 
qrt(-c*x + 1)/(a*b*c^3*x^3 + sqrt(c*x + 1)*sqrt(c*x - 1)*a*b*c^2*x^2 - a*b 
*c*x + (b^2*c^3*x^3 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x^2 - b^2*c*x)*l 
og(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))) + integrate(((c^3*x^3 + 2*c*x)*(c*x 
 + 1)^(3/2)*(c*x - 1) + (2*c^4*x^4 + c^2*x^2 - 1)*(c*x + 1)*sqrt(c*x - 1) 
+ (c^5*x^5 - c^3*x^3)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^5*x^6 + (c*x + 
1)*(c*x - 1)*a*b*c^3*x^4 - 2*a*b*c^3*x^4 + a*b*c*x^2 + 2*(a*b*c^4*x^5 - a* 
b*c^2*x^3)*sqrt(c*x + 1)*sqrt(c*x - 1) + (b^2*c^5*x^6 + (c*x + 1)*(c*x - 1 
)*b^2*c^3*x^4 - 2*b^2*c^3*x^4 + b^2*c*x^2 + 2*(b^2*c^4*x^5 - b^2*c^2*x^3)* 
sqrt(c*x + 1)*sqrt(c*x - 1))*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)
 
3.4.24.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((-c^2*x^2+1)^(1/2)/x/(a+b*arccosh(c*x))^2,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.4.24.9 Mupad [N/A]

Not integrable

Time = 3.00 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {1-c^2 x^2}}{x (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {\sqrt {1-c^2\,x^2}}{x\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2} \,d x \]

input
int((1 - c^2*x^2)^(1/2)/(x*(a + b*acosh(c*x))^2),x)
 
output
int((1 - c^2*x^2)^(1/2)/(x*(a + b*acosh(c*x))^2), x)